about summary refs log tree commit diff
path: root/nixpkgs/lib/attrsets.nix
blob: 34054460ba761947a1b815e499daded63b487a7d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
/* Operations on attribute sets. */
{ lib }:

let
  inherit (builtins) head length;
  inherit (lib.trivial) mergeAttrs warn;
  inherit (lib.strings) concatStringsSep concatMapStringsSep escapeNixIdentifier sanitizeDerivationName;
  inherit (lib.lists) foldr foldl' concatMap elemAt all partition groupBy take foldl;
in

rec {
  inherit (builtins) attrNames listToAttrs hasAttr isAttrs getAttr removeAttrs;


  /* Return an attribute from nested attribute sets.

     Nix has an [attribute selection operator `. or`](https://nixos.org/manual/nix/stable/language/operators#attribute-selection) which is sufficient for such queries, as long as the number of attributes is static. For example:

     ```nix
     (x.a.b or 6) == attrByPath ["a" "b"] 6 x
     # and
     (x.${f p}."example.com" or 6) == attrByPath [ (f p) "example.com" ] 6 x
     ```

     Example:
       x = { a = { b = 3; }; }
       # ["a" "b"] is equivalent to x.a.b
       # 6 is a default value to return if the path does not exist in attrset
       attrByPath ["a" "b"] 6 x
       => 3
       attrByPath ["z" "z"] 6 x
       => 6

     Type:
       attrByPath :: [String] -> Any -> AttrSet -> Any

  */
  attrByPath =
    # A list of strings representing the attribute path to return from `set`
    attrPath:
    # Default value if `attrPath` does not resolve to an existing value
    default:
    # The nested attribute set to select values from
    set:
    let
      lenAttrPath = length attrPath;
      attrByPath' = n: s: (
        if n == lenAttrPath then s
        else (
          let
            attr = elemAt attrPath n;
          in
          if s ? ${attr} then attrByPath' (n + 1) s.${attr}
          else default
        )
      );
    in
      attrByPath' 0 set;

  /* Return if an attribute from nested attribute set exists.

     Nix has a [has attribute operator `?`](https://nixos.org/manual/nix/stable/language/operators#has-attribute), which is sufficient for such queries, as long as the number of attributes is static. For example:

     ```nix
     (x?a.b) == hasAttryByPath ["a" "b"] x
     # and
     (x?${f p}."example.com") == hasAttryByPath [ (f p) "example.com" ] x
     ```

     **Laws**:
      1.  ```nix
          hasAttrByPath [] x == true
          ```

     Example:
       x = { a = { b = 3; }; }
       hasAttrByPath ["a" "b"] x
       => true
       hasAttrByPath ["z" "z"] x
       => false
       hasAttrByPath [] (throw "no need")
       => true

    Type:
      hasAttrByPath :: [String] -> AttrSet -> Bool
  */
  hasAttrByPath =
    # A list of strings representing the attribute path to check from `set`
    attrPath:
    # The nested attribute set to check
    e:
    let
      lenAttrPath = length attrPath;
      hasAttrByPath' = n: s: (
        n == lenAttrPath || (
          let
            attr = elemAt attrPath n;
          in
          if s ? ${attr} then hasAttrByPath' (n + 1) s.${attr}
          else false
        )
      );
    in
      hasAttrByPath' 0 e;

  /*
    Return the longest prefix of an attribute path that refers to an existing attribute in a nesting of attribute sets.

    Can be used after [`mapAttrsRecursiveCond`](#function-library-lib.attrsets.mapAttrsRecursiveCond) to apply a condition,
    although this will evaluate the predicate function on sibling attributes as well.

    Note that the empty attribute path is valid for all values, so this function only throws an exception if any of its inputs does.

    **Laws**:
    1.  ```nix
        attrsets.longestValidPathPrefix [] x == []
        ```

    2.  ```nix
        hasAttrByPath (attrsets.longestValidPathPrefix p x) x == true
        ```

    Example:
      x = { a = { b = 3; }; }
      attrsets.longestValidPathPrefix ["a" "b" "c"] x
      => ["a" "b"]
      attrsets.longestValidPathPrefix ["a"] x
      => ["a"]
      attrsets.longestValidPathPrefix ["z" "z"] x
      => []
      attrsets.longestValidPathPrefix ["z" "z"] (throw "no need")
      => []

    Type:
      attrsets.longestValidPathPrefix :: [String] -> Value -> [String]
  */
  longestValidPathPrefix =
    # A list of strings representing the longest possible path that may be returned.
    attrPath:
    # The nested attribute set to check.
    v:
    let
      lenAttrPath = length attrPath;
      getPrefixForSetAtIndex =
        # The nested attribute set to check, if it is an attribute set, which
        # is not a given.
        remainingSet:
        # The index of the attribute we're about to check, as well as
        # the length of the prefix we've already checked.
        remainingPathIndex:

          if remainingPathIndex == lenAttrPath then
            # All previously checked attributes exist, and no attr names left,
            # so we return the whole path.
            attrPath
          else
            let
              attr = elemAt attrPath remainingPathIndex;
            in
            if remainingSet ? ${attr} then
              getPrefixForSetAtIndex
                remainingSet.${attr}      # advance from the set to the attribute value
                (remainingPathIndex + 1)  # advance the path
            else
              # The attribute doesn't exist, so we return the prefix up to the
              # previously checked length.
              take remainingPathIndex attrPath;
    in
      getPrefixForSetAtIndex v 0;

  /* Create a new attribute set with `value` set at the nested attribute location specified in `attrPath`.

     Example:
       setAttrByPath ["a" "b"] 3
       => { a = { b = 3; }; }

     Type:
       setAttrByPath :: [String] -> Any -> AttrSet
  */
  setAttrByPath =
    # A list of strings representing the attribute path to set
    attrPath:
    # The value to set at the location described by `attrPath`
    value:
    let
      len = length attrPath;
      atDepth = n:
        if n == len
        then value
        else { ${elemAt attrPath n} = atDepth (n + 1); };
    in atDepth 0;

  /* Like `attrByPath`, but without a default value. If it doesn't find the
     path it will throw an error.

     Nix has an [attribute selection operator](https://nixos.org/manual/nix/stable/language/operators#attribute-selection) which is sufficient for such queries, as long as the number of attributes is static. For example:

    ```nix
     x.a.b == getAttrByPath ["a" "b"] x
     # and
     x.${f p}."example.com" == getAttrByPath [ (f p) "example.com" ] x
     ```

     Example:
       x = { a = { b = 3; }; }
       getAttrFromPath ["a" "b"] x
       => 3
       getAttrFromPath ["z" "z"] x
       => error: cannot find attribute `z.z'

     Type:
       getAttrFromPath :: [String] -> AttrSet -> Any
  */
  getAttrFromPath =
    # A list of strings representing the attribute path to get from `set`
    attrPath:
    # The nested attribute set to find the value in.
    set:
    attrByPath attrPath (abort ("cannot find attribute `" + concatStringsSep "." attrPath + "'")) set;

  /* Map each attribute in the given set and merge them into a new attribute set.

     Type:
       concatMapAttrs :: (String -> a -> AttrSet) -> AttrSet -> AttrSet

     Example:
       concatMapAttrs
         (name: value: {
           ${name} = value;
           ${name + value} = value;
         })
         { x = "a"; y = "b"; }
       => { x = "a"; xa = "a"; y = "b"; yb = "b"; }
  */
  concatMapAttrs = f: v:
    foldl' mergeAttrs { }
      (attrValues
        (mapAttrs f v)
      );


  /* Update or set specific paths of an attribute set.

     Takes a list of updates to apply and an attribute set to apply them to,
     and returns the attribute set with the updates applied. Updates are
     represented as `{ path = ...; update = ...; }` values, where `path` is a
     list of strings representing the attribute path that should be updated,
     and `update` is a function that takes the old value at that attribute path
     as an argument and returns the new
     value it should be.

     Properties:

     - Updates to deeper attribute paths are applied before updates to more
       shallow attribute paths

     - Multiple updates to the same attribute path are applied in the order
       they appear in the update list

     - If any but the last `path` element leads into a value that is not an
       attribute set, an error is thrown

     - If there is an update for an attribute path that doesn't exist,
       accessing the argument in the update function causes an error, but
       intermediate attribute sets are implicitly created as needed

     Example:
       updateManyAttrsByPath [
         {
           path = [ "a" "b" ];
           update = old: { d = old.c; };
         }
         {
           path = [ "a" "b" "c" ];
           update = old: old + 1;
         }
         {
           path = [ "x" "y" ];
           update = old: "xy";
         }
       ] { a.b.c = 0; }
       => { a = { b = { d = 1; }; }; x = { y = "xy"; }; }

    Type: updateManyAttrsByPath :: [{ path :: [String]; update :: (Any -> Any); }] -> AttrSet -> AttrSet
  */
  updateManyAttrsByPath = let
    # When recursing into attributes, instead of updating the `path` of each
    # update using `tail`, which needs to allocate an entirely new list,
    # we just pass a prefix length to use and make sure to only look at the
    # path without the prefix length, so that we can reuse the original list
    # entries.
    go = prefixLength: hasValue: value: updates:
      let
        # Splits updates into ones on this level (split.right)
        # And ones on levels further down (split.wrong)
        split = partition (el: length el.path == prefixLength) updates;

        # Groups updates on further down levels into the attributes they modify
        nested = groupBy (el: elemAt el.path prefixLength) split.wrong;

        # Applies only nested modification to the input value
        withNestedMods =
          # Return the value directly if we don't have any nested modifications
          if split.wrong == [] then
            if hasValue then value
            else
              # Throw an error if there is no value. This `head` call here is
              # safe, but only in this branch since `go` could only be called
              # with `hasValue == false` for nested updates, in which case
              # it's also always called with at least one update
              let updatePath = (head split.right).path; in
              throw
              ( "updateManyAttrsByPath: Path '${showAttrPath updatePath}' does "
              + "not exist in the given value, but the first update to this "
              + "path tries to access the existing value.")
          else
            # If there are nested modifications, try to apply them to the value
            if ! hasValue then
              # But if we don't have a value, just use an empty attribute set
              # as the value, but simplify the code a bit
              mapAttrs (name: go (prefixLength + 1) false null) nested
            else if isAttrs value then
              # If we do have a value and it's an attribute set, override it
              # with the nested modifications
              value //
              mapAttrs (name: go (prefixLength + 1) (value ? ${name}) value.${name}) nested
            else
              # However if it's not an attribute set, we can't apply the nested
              # modifications, throw an error
              let updatePath = (head split.wrong).path; in
              throw
              ( "updateManyAttrsByPath: Path '${showAttrPath updatePath}' needs to "
              + "be updated, but path '${showAttrPath (take prefixLength updatePath)}' "
              + "of the given value is not an attribute set, so we can't "
              + "update an attribute inside of it.");

        # We get the final result by applying all the updates on this level
        # after having applied all the nested updates
        # We use foldl instead of foldl' so that in case of multiple updates,
        # intermediate values aren't evaluated if not needed
      in foldl (acc: el: el.update acc) withNestedMods split.right;

  in updates: value: go 0 true value updates;

  /* Return the specified attributes from a set.

     Example:
       attrVals ["a" "b" "c"] as
       => [as.a as.b as.c]

     Type:
       attrVals :: [String] -> AttrSet -> [Any]
  */
  attrVals =
    # The list of attributes to fetch from `set`. Each attribute name must exist on the attrbitue set
    nameList:
    # The set to get attribute values from
    set: map (x: set.${x}) nameList;


  /* Return the values of all attributes in the given set, sorted by
     attribute name.

     Example:
       attrValues {c = 3; a = 1; b = 2;}
       => [1 2 3]

     Type:
       attrValues :: AttrSet -> [Any]
  */
  attrValues = builtins.attrValues;


  /* Given a set of attribute names, return the set of the corresponding
     attributes from the given set.

     Example:
       getAttrs [ "a" "b" ] { a = 1; b = 2; c = 3; }
       => { a = 1; b = 2; }

     Type:
       getAttrs :: [String] -> AttrSet -> AttrSet
  */
  getAttrs =
    # A list of attribute names to get out of `set`
    names:
    # The set to get the named attributes from
    attrs: genAttrs names (name: attrs.${name});

  /* Collect each attribute named `attr` from a list of attribute
     sets.  Sets that don't contain the named attribute are ignored.

     Example:
       catAttrs "a" [{a = 1;} {b = 0;} {a = 2;}]
       => [1 2]

     Type:
       catAttrs :: String -> [AttrSet] -> [Any]
  */
  catAttrs = builtins.catAttrs;


  /* Filter an attribute set by removing all attributes for which the
     given predicate return false.

     Example:
       filterAttrs (n: v: n == "foo") { foo = 1; bar = 2; }
       => { foo = 1; }

     Type:
       filterAttrs :: (String -> Any -> Bool) -> AttrSet -> AttrSet
  */
  filterAttrs =
    # Predicate taking an attribute name and an attribute value, which returns `true` to include the attribute, or `false` to exclude the attribute.
    pred:
    # The attribute set to filter
    set:
    listToAttrs (concatMap (name: let v = set.${name}; in if pred name v then [(nameValuePair name v)] else []) (attrNames set));


  /* Filter an attribute set recursively by removing all attributes for
     which the given predicate return false.

     Example:
       filterAttrsRecursive (n: v: v != null) { foo = { bar = null; }; }
       => { foo = {}; }

     Type:
       filterAttrsRecursive :: (String -> Any -> Bool) -> AttrSet -> AttrSet
  */
  filterAttrsRecursive =
    # Predicate taking an attribute name and an attribute value, which returns `true` to include the attribute, or `false` to exclude the attribute.
    pred:
    # The attribute set to filter
    set:
    listToAttrs (
      concatMap (name:
        let v = set.${name}; in
        if pred name v then [
          (nameValuePair name (
            if isAttrs v then filterAttrsRecursive pred v
            else v
          ))
        ] else []
      ) (attrNames set)
    );

   /*
    Like [`lib.lists.foldl'`](#function-library-lib.lists.foldl-prime) but for attribute sets.
    Iterates over every name-value pair in the given attribute set.
    The result of the callback function is often called `acc` for accumulator. It is passed between callbacks from left to right and the final `acc` is the return value of `foldlAttrs`.

    Attention:
      There is a completely different function
      `lib.foldAttrs`
      which has nothing to do with this function, despite the similar name.

    Example:
      foldlAttrs
        (acc: name: value: {
          sum = acc.sum + value;
          names = acc.names ++ [name];
        })
        { sum = 0; names = []; }
        {
          foo = 1;
          bar = 10;
        }
      ->
        {
          sum = 11;
          names = ["bar" "foo"];
        }

      foldlAttrs
        (throw "function not needed")
        123
        {};
      ->
        123

      foldlAttrs
        (acc: _: _: acc)
        3
        { z = throw "value not needed"; a = throw "value not needed"; };
      ->
        3

      The accumulator doesn't have to be an attrset.
      It can be as simple as a number or string.

      foldlAttrs
        (acc: _: v: acc * 10 + v)
        1
        { z = 1; a = 2; };
      ->
        121

    Type:
      foldlAttrs :: ( a -> String -> b -> a ) -> a -> { ... :: b } -> a
  */
  foldlAttrs = f: init: set:
    foldl'
      (acc: name: f acc name set.${name})
      init
      (attrNames set);

  /* Apply fold functions to values grouped by key.

     Example:
       foldAttrs (item: acc: [item] ++ acc) [] [{ a = 2; } { a = 3; }]
       => { a = [ 2 3 ]; }

     Type:
       foldAttrs :: (Any -> Any -> Any) -> Any -> [AttrSets] -> Any

  */
  foldAttrs =
    # A function, given a value and a collector combines the two.
    op:
    # The starting value.
    nul:
    # A list of attribute sets to fold together by key.
    list_of_attrs:
    foldr (n: a:
        foldr (name: o:
          o // { ${name} = op n.${name} (a.${name} or nul); }
        ) a (attrNames n)
    ) {} list_of_attrs;


  /* Recursively collect sets that verify a given predicate named `pred`
     from the set `attrs`.  The recursion is stopped when the predicate is
     verified.

     Example:
       collect isList { a = { b = ["b"]; }; c = [1]; }
       => [["b"] [1]]

       collect (x: x ? outPath)
          { a = { outPath = "a/"; }; b = { outPath = "b/"; }; }
       => [{ outPath = "a/"; } { outPath = "b/"; }]

     Type:
       collect :: (AttrSet -> Bool) -> AttrSet -> [x]
  */
  collect =
  # Given an attribute's value, determine if recursion should stop.
  pred:
  # The attribute set to recursively collect.
  attrs:
    if pred attrs then
      [ attrs ]
    else if isAttrs attrs then
      concatMap (collect pred) (attrValues attrs)
    else
      [];

  /* Return the cartesian product of attribute set value combinations.

    Example:
      cartesianProductOfSets { a = [ 1 2 ]; b = [ 10 20 ]; }
      => [
           { a = 1; b = 10; }
           { a = 1; b = 20; }
           { a = 2; b = 10; }
           { a = 2; b = 20; }
         ]
     Type:
       cartesianProductOfSets :: AttrSet -> [AttrSet]
  */
  cartesianProductOfSets =
    # Attribute set with attributes that are lists of values
    attrsOfLists:
    foldl' (listOfAttrs: attrName:
      concatMap (attrs:
        map (listValue: attrs // { ${attrName} = listValue; }) attrsOfLists.${attrName}
      ) listOfAttrs
    ) [{}] (attrNames attrsOfLists);


  /* Utility function that creates a `{name, value}` pair as expected by `builtins.listToAttrs`.

     Example:
       nameValuePair "some" 6
       => { name = "some"; value = 6; }

     Type:
       nameValuePair :: String -> Any -> { name :: String; value :: Any; }
  */
  nameValuePair =
    # Attribute name
    name:
    # Attribute value
    value:
    { inherit name value; };


  /* Apply a function to each element in an attribute set, creating a new attribute set.

     Example:
       mapAttrs (name: value: name + "-" + value)
          { x = "foo"; y = "bar"; }
       => { x = "x-foo"; y = "y-bar"; }

     Type:
       mapAttrs :: (String -> Any -> Any) -> AttrSet -> AttrSet
  */
  mapAttrs = builtins.mapAttrs;


  /* Like `mapAttrs`, but allows the name of each attribute to be
     changed in addition to the value.  The applied function should
     return both the new name and value as a `nameValuePair`.

     Example:
       mapAttrs' (name: value: nameValuePair ("foo_" + name) ("bar-" + value))
          { x = "a"; y = "b"; }
       => { foo_x = "bar-a"; foo_y = "bar-b"; }

     Type:
       mapAttrs' :: (String -> Any -> { name :: String; value :: Any; }) -> AttrSet -> AttrSet
  */
  mapAttrs' =
    # A function, given an attribute's name and value, returns a new `nameValuePair`.
    f:
    # Attribute set to map over.
    set:
    listToAttrs (map (attr: f attr set.${attr}) (attrNames set));


  /* Call a function for each attribute in the given set and return
     the result in a list.

     Example:
       mapAttrsToList (name: value: name + value)
          { x = "a"; y = "b"; }
       => [ "xa" "yb" ]

     Type:
       mapAttrsToList :: (String -> a -> b) -> AttrSet -> [b]

  */
  mapAttrsToList =
    # A function, given an attribute's name and value, returns a new value.
    f:
    # Attribute set to map over.
    attrs:
    map (name: f name attrs.${name}) (attrNames attrs);

  /*
    Deconstruct an attrset to a list of name-value pairs as expected by [`builtins.listToAttrs`](https://nixos.org/manual/nix/stable/language/builtins.html#builtins-listToAttrs).
    Each element of the resulting list is an attribute set with these attributes:
    - `name` (string): The name of the attribute
    - `value` (any): The value of the attribute

    The following is always true:
    ```nix
    builtins.listToAttrs (attrsToList attrs) == attrs
    ```

    :::{.warning}
    The opposite is not always true. In general expect that
    ```nix
    attrsToList (builtins.listToAttrs list) != list
    ```

    This is because the `listToAttrs` removes duplicate names and doesn't preserve the order of the list.
    :::

    Example:
      attrsToList { foo = 1; bar = "asdf"; }
      => [ { name = "bar"; value = "asdf"; } { name = "foo"; value = 1; } ]

    Type:
      attrsToList :: AttrSet -> [ { name :: String; value :: Any; } ]

  */
  attrsToList = mapAttrsToList nameValuePair;


  /**
    Like `mapAttrs`, except that it recursively applies itself to the *leaf* attributes of a potentially-nested attribute set:
    the second argument of the function will never be an attrset.
    Also, the first argument of the mapping function is a *list* of the attribute names that form the path to the leaf attribute.

    For a function that gives you control over what counts as a leaf, see `mapAttrsRecursiveCond`.

    :::{#map-attrs-recursive-example .example}
    # Map over leaf attributes

    ```nix
    mapAttrsRecursive (path: value: concatStringsSep "-" (path ++ [value]))
      { n = { a = "A"; m = { b = "B"; c = "C"; }; }; d = "D"; }
    ```
    evaluates to
    ```nix
    { n = { a = "n-a-A"; m = { b = "n-m-b-B"; c = "n-m-c-C"; }; }; d = "d-D"; }
    ```
    :::

    # Type
    ```
    mapAttrsRecursive :: ([String] -> a -> b) -> AttrSet -> AttrSet
    ```
  */
  mapAttrsRecursive =
    # A function that, given an attribute path as a list of strings and the corresponding attribute value, returns a new value.
    f:
    # Attribute set to recursively map over.
    set:
    mapAttrsRecursiveCond (as: true) f set;


  /**
    Like `mapAttrsRecursive`, but it takes an additional predicate that tells it whether to recurse into an attribute set.
    If the predicate returns false, `mapAttrsRecursiveCond` does not recurse, but instead applies the mapping function.
    If the predicate returns true, it does recurse, and does not apply the mapping function.

    :::{#map-attrs-recursive-cond-example .example}
    # Map over an leaf attributes defined by a condition

    Map derivations to their `name` attribute.
    Derivatons are identified as attribute sets that contain `{ type = "derivation"; }`.
    ```nix
    mapAttrsRecursiveCond
      (as: !(as ? "type" && as.type == "derivation"))
      (x: x.name)
      attrs
    ```
    :::

    # Type
    ```
    mapAttrsRecursiveCond :: (AttrSet -> Bool) -> ([String] -> a -> b) -> AttrSet -> AttrSet
    ```
  */
  mapAttrsRecursiveCond =
    # A function that, given the attribute set the recursion is currently at, determines if to recurse deeper into that attribute set.
    cond:
    # A function that, given an attribute path as a list of strings and the corresponding attribute value, returns a new value.
    # The attribute value is either an attribute set for which `cond` returns false, or something other than an attribute set.
    f:
    # Attribute set to recursively map over.
    set:
    let
      recurse = path:
        mapAttrs
          (name: value:
            if isAttrs value && cond value
            then recurse (path ++ [ name ]) value
            else f (path ++ [ name ]) value);
    in
    recurse [ ] set;


  /* Generate an attribute set by mapping a function over a list of
     attribute names.

     Example:
       genAttrs [ "foo" "bar" ] (name: "x_" + name)
       => { foo = "x_foo"; bar = "x_bar"; }

     Type:
       genAttrs :: [ String ] -> (String -> Any) -> AttrSet
  */
  genAttrs =
    # Names of values in the resulting attribute set.
    names:
    # A function, given the name of the attribute, returns the attribute's value.
    f:
    listToAttrs (map (n: nameValuePair n (f n)) names);


  /* Check whether the argument is a derivation. Any set with
     `{ type = "derivation"; }` counts as a derivation.

     Example:
       nixpkgs = import <nixpkgs> {}
       isDerivation nixpkgs.ruby
       => true
       isDerivation "foobar"
       => false

     Type:
       isDerivation :: Any -> Bool
  */
  isDerivation =
    # Value to check.
    value: value.type or null == "derivation";

   /* Converts a store path to a fake derivation.

      Type:
        toDerivation :: Path -> Derivation
   */
   toDerivation =
     # A store path to convert to a derivation.
     path:
     let
       path' = builtins.storePath path;
       res =
         { type = "derivation";
           name = sanitizeDerivationName (builtins.substring 33 (-1) (baseNameOf path'));
           outPath = path';
           outputs = [ "out" ];
           out = res;
           outputName = "out";
         };
    in res;


  /* If `cond` is true, return the attribute set `as`,
     otherwise an empty attribute set.

     Example:
       optionalAttrs (true) { my = "set"; }
       => { my = "set"; }
       optionalAttrs (false) { my = "set"; }
       => { }

     Type:
       optionalAttrs :: Bool -> AttrSet -> AttrSet
  */
  optionalAttrs =
    # Condition under which the `as` attribute set is returned.
    cond:
    # The attribute set to return if `cond` is `true`.
    as:
    if cond then as else {};


  /* Merge sets of attributes and use the function `f` to merge attributes
     values.

     Example:
       zipAttrsWithNames ["a"] (name: vs: vs) [{a = "x";} {a = "y"; b = "z";}]
       => { a = ["x" "y"]; }

     Type:
       zipAttrsWithNames :: [ String ] -> (String -> [ Any ] -> Any) -> [ AttrSet ] -> AttrSet
  */
  zipAttrsWithNames =
    # List of attribute names to zip.
    names:
    # A function, accepts an attribute name, all the values, and returns a combined value.
    f:
    # List of values from the list of attribute sets.
    sets:
    listToAttrs (map (name: {
      inherit name;
      value = f name (catAttrs name sets);
    }) names);


  /* Merge sets of attributes and use the function f to merge attribute values.
     Like `lib.attrsets.zipAttrsWithNames` with all key names are passed for `names`.

     Implementation note: Common names appear multiple times in the list of
     names, hopefully this does not affect the system because the maximal
     laziness avoid computing twice the same expression and `listToAttrs` does
     not care about duplicated attribute names.

     Example:
       zipAttrsWith (name: values: values) [{a = "x";} {a = "y"; b = "z";}]
       => { a = ["x" "y"]; b = ["z"]; }

     Type:
       zipAttrsWith :: (String -> [ Any ] -> Any) -> [ AttrSet ] -> AttrSet
  */
  zipAttrsWith =
    builtins.zipAttrsWith or (f: sets: zipAttrsWithNames (concatMap attrNames sets) f sets);


  /* Merge sets of attributes and combine each attribute value in to a list.

     Like `lib.attrsets.zipAttrsWith` with `(name: values: values)` as the function.

     Example:
       zipAttrs [{a = "x";} {a = "y"; b = "z";}]
       => { a = ["x" "y"]; b = ["z"]; }

     Type:
       zipAttrs :: [ AttrSet ] -> AttrSet
  */
  zipAttrs = zipAttrsWith (name: values: values);

  /*
    Merge a list of attribute sets together using the `//` operator.
    In case of duplicate attributes, values from later list elements take precedence over earlier ones.
    The result is the same as `foldl mergeAttrs { }`, but the performance is better for large inputs.
    For n list elements, each with an attribute set containing m unique attributes, the complexity of this operation is O(nm log n).

    Type:
      mergeAttrsList :: [ Attrs ] -> Attrs

    Example:
      mergeAttrsList [ { a = 0; b = 1; } { c = 2; d = 3; } ]
      => { a = 0; b = 1; c = 2; d = 3; }
      mergeAttrsList [ { a = 0; } { a = 1; } ]
      => { a = 1; }
  */
  mergeAttrsList = list:
    let
      # `binaryMerge start end` merges the elements at indices `index` of `list` such that `start <= index < end`
      # Type: Int -> Int -> Attrs
      binaryMerge = start: end:
        # assert start < end; # Invariant
        if end - start >= 2 then
          # If there's at least 2 elements, split the range in two, recurse on each part and merge the result
          # The invariant is satisfied because each half will have at least 1 element
          binaryMerge start (start + (end - start) / 2)
          // binaryMerge (start + (end - start) / 2) end
        else
          # Otherwise there will be exactly 1 element due to the invariant, in which case we just return it directly
          elemAt list start;
    in
    if list == [ ] then
      # Calling binaryMerge as below would not satisfy its invariant
      { }
    else
      binaryMerge 0 (length list);


  /* Does the same as the update operator '//' except that attributes are
     merged until the given predicate is verified.  The predicate should
     accept 3 arguments which are the path to reach the attribute, a part of
     the first attribute set and a part of the second attribute set.  When
     the predicate is satisfied, the value of the first attribute set is
     replaced by the value of the second attribute set.

     Example:
       recursiveUpdateUntil (path: l: r: path == ["foo"]) {
         # first attribute set
         foo.bar = 1;
         foo.baz = 2;
         bar = 3;
       } {
         #second attribute set
         foo.bar = 1;
         foo.quz = 2;
         baz = 4;
       }

       => {
         foo.bar = 1; # 'foo.*' from the second set
         foo.quz = 2; #
         bar = 3;     # 'bar' from the first set
         baz = 4;     # 'baz' from the second set
       }

     Type:
       recursiveUpdateUntil :: ( [ String ] -> AttrSet -> AttrSet -> Bool ) -> AttrSet -> AttrSet -> AttrSet
  */
  recursiveUpdateUntil =
    # Predicate, taking the path to the current attribute as a list of strings for attribute names, and the two values at that path from the original arguments.
    pred:
    # Left attribute set of the merge.
    lhs:
    # Right attribute set of the merge.
    rhs:
    let f = attrPath:
      zipAttrsWith (n: values:
        let here = attrPath ++ [n]; in
        if length values == 1
        || pred here (elemAt values 1) (head values) then
          head values
        else
          f here values
      );
    in f [] [rhs lhs];


  /* A recursive variant of the update operator ‘//’.  The recursion
     stops when one of the attribute values is not an attribute set,
     in which case the right hand side value takes precedence over the
     left hand side value.

     Example:
       recursiveUpdate {
         boot.loader.grub.enable = true;
         boot.loader.grub.device = "/dev/hda";
       } {
         boot.loader.grub.device = "";
       }

       returns: {
         boot.loader.grub.enable = true;
         boot.loader.grub.device = "";
       }

     Type:
       recursiveUpdate :: AttrSet -> AttrSet -> AttrSet
  */
  recursiveUpdate =
    # Left attribute set of the merge.
    lhs:
    # Right attribute set of the merge.
    rhs:
    recursiveUpdateUntil (path: lhs: rhs: !(isAttrs lhs && isAttrs rhs)) lhs rhs;


  /*
    Recurse into every attribute set of the first argument and check that:
    - Each attribute path also exists in the second argument.
    - If the attribute's value is not a nested attribute set, it must have the same value in the right argument.

     Example:
       matchAttrs { cpu = {}; } { cpu = { bits = 64; }; }
       => true

     Type:
       matchAttrs :: AttrSet -> AttrSet -> Bool
  */
  matchAttrs =
    # Attribute set structure to match
    pattern:
    # Attribute set to check
    attrs:
    assert isAttrs pattern;
    all
    ( # Compare equality between `pattern` & `attrs`.
      attr:
      # Missing attr, not equal.
      attrs ? ${attr} && (
        let
          lhs = pattern.${attr};
          rhs = attrs.${attr};
        in
        # If attrset check recursively
        if isAttrs lhs then isAttrs rhs && matchAttrs lhs rhs
        else lhs == rhs
      )
    )
    (attrNames pattern);

  /* Override only the attributes that are already present in the old set
    useful for deep-overriding.

    Example:
      overrideExisting {} { a = 1; }
      => {}
      overrideExisting { b = 2; } { a = 1; }
      => { b = 2; }
      overrideExisting { a = 3; b = 2; } { a = 1; }
      => { a = 1; b = 2; }

    Type:
      overrideExisting :: AttrSet -> AttrSet -> AttrSet
  */
  overrideExisting =
    # Original attribute set
    old:
    # Attribute set with attributes to override in `old`.
    new:
    mapAttrs (name: value: new.${name} or value) old;


  /* Turns a list of strings into a human-readable description of those
    strings represented as an attribute path. The result of this function is
    not intended to be machine-readable.
    Create a new attribute set with `value` set at the nested attribute location specified in `attrPath`.

    Example:
      showAttrPath [ "foo" "10" "bar" ]
      => "foo.\"10\".bar"
      showAttrPath []
      => "<root attribute path>"

    Type:
      showAttrPath :: [String] -> String
  */
  showAttrPath =
    # Attribute path to render to a string
    path:
    if path == [] then "<root attribute path>"
    else concatMapStringsSep "." escapeNixIdentifier path;


  /* Get a package output.
     If no output is found, fallback to `.out` and then to the default.

     Example:
       getOutput "dev" pkgs.openssl
       => "/nix/store/9rz8gxhzf8sw4kf2j2f1grr49w8zx5vj-openssl-1.0.1r-dev"

     Type:
       getOutput :: String -> Derivation -> String
  */
  getOutput = output: pkg:
    if ! pkg ? outputSpecified || ! pkg.outputSpecified
      then pkg.${output} or pkg.out or pkg
      else pkg;

  /* Get a package's `bin` output.
     If the output does not exist, fallback to `.out` and then to the default.

     Example:
       getBin pkgs.openssl
       => "/nix/store/9rz8gxhzf8sw4kf2j2f1grr49w8zx5vj-openssl-1.0.1r"

     Type:
       getBin :: Derivation -> String
  */
  getBin = getOutput "bin";


  /* Get a package's `lib` output.
     If the output does not exist, fallback to `.out` and then to the default.

     Example:
       getLib pkgs.openssl
       => "/nix/store/9rz8gxhzf8sw4kf2j2f1grr49w8zx5vj-openssl-1.0.1r-lib"

     Type:
       getLib :: Derivation -> String
  */
  getLib = getOutput "lib";


  /* Get a package's `dev` output.
     If the output does not exist, fallback to `.out` and then to the default.

     Example:
       getDev pkgs.openssl
       => "/nix/store/9rz8gxhzf8sw4kf2j2f1grr49w8zx5vj-openssl-1.0.1r-dev"

     Type:
       getDev :: Derivation -> String
  */
  getDev = getOutput "dev";


  /* Get a package's `man` output.
     If the output does not exist, fallback to `.out` and then to the default.

     Example:
       getMan pkgs.openssl
       => "/nix/store/9rz8gxhzf8sw4kf2j2f1grr49w8zx5vj-openssl-1.0.1r-man"

     Type:
       getMan :: Derivation -> String
  */
  getMan = getOutput "man";

  /* Pick the outputs of packages to place in `buildInputs`

   Type: chooseDevOutputs :: [Derivation] -> [String]

  */
  chooseDevOutputs = builtins.map getDev;

  /* Make various Nix tools consider the contents of the resulting
     attribute set when looking for what to build, find, etc.

     This function only affects a single attribute set; it does not
     apply itself recursively for nested attribute sets.

     Example:
       { pkgs ? import <nixpkgs> {} }:
       {
         myTools = pkgs.lib.recurseIntoAttrs {
           inherit (pkgs) hello figlet;
         };
       }

     Type:
       recurseIntoAttrs :: AttrSet -> AttrSet

   */
  recurseIntoAttrs =
    # An attribute set to scan for derivations.
    attrs:
    attrs // { recurseForDerivations = true; };

  /* Undo the effect of recurseIntoAttrs.

     Type:
       dontRecurseIntoAttrs :: AttrSet -> AttrSet
   */
  dontRecurseIntoAttrs =
    # An attribute set to not scan for derivations.
    attrs:
    attrs // { recurseForDerivations = false; };

  /* `unionOfDisjoint x y` is equal to `x // y // z` where the
     attrnames in `z` are the intersection of the attrnames in `x` and
     `y`, and all values `assert` with an error message.  This
      operator is commutative, unlike (//).

     Type: unionOfDisjoint :: AttrSet -> AttrSet -> AttrSet
  */
  unionOfDisjoint = x: y:
    let
      intersection = builtins.intersectAttrs x y;
      collisions = lib.concatStringsSep " " (builtins.attrNames intersection);
      mask = builtins.mapAttrs (name: value: builtins.throw
        "unionOfDisjoint: collision on ${name}; complete list: ${collisions}")
        intersection;
    in
      (x // y) // mask;

  # DEPRECATED
  zipWithNames = warn
    "lib.zipWithNames is a deprecated alias of lib.zipAttrsWithNames." zipAttrsWithNames;

  # DEPRECATED
  zip = warn
    "lib.zip is a deprecated alias of lib.zipAttrsWith." zipAttrsWith;
}