/* Operations on attribute sets. */ { lib }: let inherit (builtins) head length; inherit (lib.trivial) mergeAttrs warn; inherit (lib.strings) concatStringsSep concatMapStringsSep escapeNixIdentifier sanitizeDerivationName; inherit (lib.lists) foldr foldl' concatMap elemAt all partition groupBy take foldl; in rec { inherit (builtins) attrNames listToAttrs hasAttr isAttrs getAttr removeAttrs; /* Return an attribute from nested attribute sets. Nix has an [attribute selection operator `. or`](https://nixos.org/manual/nix/stable/language/operators#attribute-selection) which is sufficient for such queries, as long as the number of attributes is static. For example: ```nix (x.a.b or 6) == attrByPath ["a" "b"] 6 x # and (x.${f p}."example.com" or 6) == attrByPath [ (f p) "example.com" ] 6 x ``` Example: x = { a = { b = 3; }; } # ["a" "b"] is equivalent to x.a.b # 6 is a default value to return if the path does not exist in attrset attrByPath ["a" "b"] 6 x => 3 attrByPath ["z" "z"] 6 x => 6 Type: attrByPath :: [String] -> Any -> AttrSet -> Any */ attrByPath = # A list of strings representing the attribute path to return from `set` attrPath: # Default value if `attrPath` does not resolve to an existing value default: # The nested attribute set to select values from set: let lenAttrPath = length attrPath; attrByPath' = n: s: ( if n == lenAttrPath then s else ( let attr = elemAt attrPath n; in if s ? ${attr} then attrByPath' (n + 1) s.${attr} else default ) ); in attrByPath' 0 set; /* Return if an attribute from nested attribute set exists. Nix has a [has attribute operator `?`](https://nixos.org/manual/nix/stable/language/operators#has-attribute), which is sufficient for such queries, as long as the number of attributes is static. For example: ```nix (x?a.b) == hasAttryByPath ["a" "b"] x # and (x?${f p}."example.com") == hasAttryByPath [ (f p) "example.com" ] x ``` **Laws**: 1. ```nix hasAttrByPath [] x == true ``` Example: x = { a = { b = 3; }; } hasAttrByPath ["a" "b"] x => true hasAttrByPath ["z" "z"] x => false hasAttrByPath [] (throw "no need") => true Type: hasAttrByPath :: [String] -> AttrSet -> Bool */ hasAttrByPath = # A list of strings representing the attribute path to check from `set` attrPath: # The nested attribute set to check e: let lenAttrPath = length attrPath; hasAttrByPath' = n: s: ( n == lenAttrPath || ( let attr = elemAt attrPath n; in if s ? ${attr} then hasAttrByPath' (n + 1) s.${attr} else false ) ); in hasAttrByPath' 0 e; /* Return the longest prefix of an attribute path that refers to an existing attribute in a nesting of attribute sets. Can be used after [`mapAttrsRecursiveCond`](#function-library-lib.attrsets.mapAttrsRecursiveCond) to apply a condition, although this will evaluate the predicate function on sibling attributes as well. Note that the empty attribute path is valid for all values, so this function only throws an exception if any of its inputs does. **Laws**: 1. ```nix attrsets.longestValidPathPrefix [] x == [] ``` 2. ```nix hasAttrByPath (attrsets.longestValidPathPrefix p x) x == true ``` Example: x = { a = { b = 3; }; } attrsets.longestValidPathPrefix ["a" "b" "c"] x => ["a" "b"] attrsets.longestValidPathPrefix ["a"] x => ["a"] attrsets.longestValidPathPrefix ["z" "z"] x => [] attrsets.longestValidPathPrefix ["z" "z"] (throw "no need") => [] Type: attrsets.longestValidPathPrefix :: [String] -> Value -> [String] */ longestValidPathPrefix = # A list of strings representing the longest possible path that may be returned. attrPath: # The nested attribute set to check. v: let lenAttrPath = length attrPath; getPrefixForSetAtIndex = # The nested attribute set to check, if it is an attribute set, which # is not a given. remainingSet: # The index of the attribute we're about to check, as well as # the length of the prefix we've already checked. remainingPathIndex: if remainingPathIndex == lenAttrPath then # All previously checked attributes exist, and no attr names left, # so we return the whole path. attrPath else let attr = elemAt attrPath remainingPathIndex; in if remainingSet ? ${attr} then getPrefixForSetAtIndex remainingSet.${attr} # advance from the set to the attribute value (remainingPathIndex + 1) # advance the path else # The attribute doesn't exist, so we return the prefix up to the # previously checked length. take remainingPathIndex attrPath; in getPrefixForSetAtIndex v 0; /* Create a new attribute set with `value` set at the nested attribute location specified in `attrPath`. Example: setAttrByPath ["a" "b"] 3 => { a = { b = 3; }; } Type: setAttrByPath :: [String] -> Any -> AttrSet */ setAttrByPath = # A list of strings representing the attribute path to set attrPath: # The value to set at the location described by `attrPath` value: let len = length attrPath; atDepth = n: if n == len then value else { ${elemAt attrPath n} = atDepth (n + 1); }; in atDepth 0; /* Like `attrByPath`, but without a default value. If it doesn't find the path it will throw an error. Nix has an [attribute selection operator](https://nixos.org/manual/nix/stable/language/operators#attribute-selection) which is sufficient for such queries, as long as the number of attributes is static. For example: ```nix x.a.b == getAttrByPath ["a" "b"] x # and x.${f p}."example.com" == getAttrByPath [ (f p) "example.com" ] x ``` Example: x = { a = { b = 3; }; } getAttrFromPath ["a" "b"] x => 3 getAttrFromPath ["z" "z"] x => error: cannot find attribute `z.z' Type: getAttrFromPath :: [String] -> AttrSet -> Any */ getAttrFromPath = # A list of strings representing the attribute path to get from `set` attrPath: # The nested attribute set to find the value in. set: attrByPath attrPath (abort ("cannot find attribute `" + concatStringsSep "." attrPath + "'")) set; /* Map each attribute in the given set and merge them into a new attribute set. Type: concatMapAttrs :: (String -> a -> AttrSet) -> AttrSet -> AttrSet Example: concatMapAttrs (name: value: { ${name} = value; ${name + value} = value; }) { x = "a"; y = "b"; } => { x = "a"; xa = "a"; y = "b"; yb = "b"; } */ concatMapAttrs = f: v: foldl' mergeAttrs { } (attrValues (mapAttrs f v) ); /* Update or set specific paths of an attribute set. Takes a list of updates to apply and an attribute set to apply them to, and returns the attribute set with the updates applied. Updates are represented as `{ path = ...; update = ...; }` values, where `path` is a list of strings representing the attribute path that should be updated, and `update` is a function that takes the old value at that attribute path as an argument and returns the new value it should be. Properties: - Updates to deeper attribute paths are applied before updates to more shallow attribute paths - Multiple updates to the same attribute path are applied in the order they appear in the update list - If any but the last `path` element leads into a value that is not an attribute set, an error is thrown - If there is an update for an attribute path that doesn't exist, accessing the argument in the update function causes an error, but intermediate attribute sets are implicitly created as needed Example: updateManyAttrsByPath [ { path = [ "a" "b" ]; update = old: { d = old.c; }; } { path = [ "a" "b" "c" ]; update = old: old + 1; } { path = [ "x" "y" ]; update = old: "xy"; } ] { a.b.c = 0; } => { a = { b = { d = 1; }; }; x = { y = "xy"; }; } Type: updateManyAttrsByPath :: [{ path :: [String]; update :: (Any -> Any); }] -> AttrSet -> AttrSet */ updateManyAttrsByPath = let # When recursing into attributes, instead of updating the `path` of each # update using `tail`, which needs to allocate an entirely new list, # we just pass a prefix length to use and make sure to only look at the # path without the prefix length, so that we can reuse the original list # entries. go = prefixLength: hasValue: value: updates: let # Splits updates into ones on this level (split.right) # And ones on levels further down (split.wrong) split = partition (el: length el.path == prefixLength) updates; # Groups updates on further down levels into the attributes they modify nested = groupBy (el: elemAt el.path prefixLength) split.wrong; # Applies only nested modification to the input value withNestedMods = # Return the value directly if we don't have any nested modifications if split.wrong == [] then if hasValue then value else # Throw an error if there is no value. This `head` call here is # safe, but only in this branch since `go` could only be called # with `hasValue == false` for nested updates, in which case # it's also always called with at least one update let updatePath = (head split.right).path; in throw ( "updateManyAttrsByPath: Path '${showAttrPath updatePath}' does " + "not exist in the given value, but the first update to this " + "path tries to access the existing value.") else # If there are nested modifications, try to apply them to the value if ! hasValue then # But if we don't have a value, just use an empty attribute set # as the value, but simplify the code a bit mapAttrs (name: go (prefixLength + 1) false null) nested else if isAttrs value then # If we do have a value and it's an attribute set, override it # with the nested modifications value // mapAttrs (name: go (prefixLength + 1) (value ? ${name}) value.${name}) nested else # However if it's not an attribute set, we can't apply the nested # modifications, throw an error let updatePath = (head split.wrong).path; in throw ( "updateManyAttrsByPath: Path '${showAttrPath updatePath}' needs to " + "be updated, but path '${showAttrPath (take prefixLength updatePath)}' " + "of the given value is not an attribute set, so we can't " + "update an attribute inside of it."); # We get the final result by applying all the updates on this level # after having applied all the nested updates # We use foldl instead of foldl' so that in case of multiple updates, # intermediate values aren't evaluated if not needed in foldl (acc: el: el.update acc) withNestedMods split.right; in updates: value: go 0 true value updates; /* Return the specified attributes from a set. Example: attrVals ["a" "b" "c"] as => [as.a as.b as.c] Type: attrVals :: [String] -> AttrSet -> [Any] */ attrVals = # The list of attributes to fetch from `set`. Each attribute name must exist on the attrbitue set nameList: # The set to get attribute values from set: map (x: set.${x}) nameList; /* Return the values of all attributes in the given set, sorted by attribute name. Example: attrValues {c = 3; a = 1; b = 2;} => [1 2 3] Type: attrValues :: AttrSet -> [Any] */ attrValues = builtins.attrValues; /* Given a set of attribute names, return the set of the corresponding attributes from the given set. Example: getAttrs [ "a" "b" ] { a = 1; b = 2; c = 3; } => { a = 1; b = 2; } Type: getAttrs :: [String] -> AttrSet -> AttrSet */ getAttrs = # A list of attribute names to get out of `set` names: # The set to get the named attributes from attrs: genAttrs names (name: attrs.${name}); /* Collect each attribute named `attr` from a list of attribute sets. Sets that don't contain the named attribute are ignored. Example: catAttrs "a" [{a = 1;} {b = 0;} {a = 2;}] => [1 2] Type: catAttrs :: String -> [AttrSet] -> [Any] */ catAttrs = builtins.catAttrs; /* Filter an attribute set by removing all attributes for which the given predicate return false. Example: filterAttrs (n: v: n == "foo") { foo = 1; bar = 2; } => { foo = 1; } Type: filterAttrs :: (String -> Any -> Bool) -> AttrSet -> AttrSet */ filterAttrs = # Predicate taking an attribute name and an attribute value, which returns `true` to include the attribute, or `false` to exclude the attribute. pred: # The attribute set to filter set: listToAttrs (concatMap (name: let v = set.${name}; in if pred name v then [(nameValuePair name v)] else []) (attrNames set)); /* Filter an attribute set recursively by removing all attributes for which the given predicate return false. Example: filterAttrsRecursive (n: v: v != null) { foo = { bar = null; }; } => { foo = {}; } Type: filterAttrsRecursive :: (String -> Any -> Bool) -> AttrSet -> AttrSet */ filterAttrsRecursive = # Predicate taking an attribute name and an attribute value, which returns `true` to include the attribute, or `false` to exclude the attribute. pred: # The attribute set to filter set: listToAttrs ( concatMap (name: let v = set.${name}; in if pred name v then [ (nameValuePair name ( if isAttrs v then filterAttrsRecursive pred v else v )) ] else [] ) (attrNames set) ); /* Like [`lib.lists.foldl'`](#function-library-lib.lists.foldl-prime) but for attribute sets. Iterates over every name-value pair in the given attribute set. The result of the callback function is often called `acc` for accumulator. It is passed between callbacks from left to right and the final `acc` is the return value of `foldlAttrs`. Attention: There is a completely different function `lib.foldAttrs` which has nothing to do with this function, despite the similar name. Example: foldlAttrs (acc: name: value: { sum = acc.sum + value; names = acc.names ++ [name]; }) { sum = 0; names = []; } { foo = 1; bar = 10; } -> { sum = 11; names = ["bar" "foo"]; } foldlAttrs (throw "function not needed") 123 {}; -> 123 foldlAttrs (acc: _: _: acc) 3 { z = throw "value not needed"; a = throw "value not needed"; }; -> 3 The accumulator doesn't have to be an attrset. It can be as simple as a number or string. foldlAttrs (acc: _: v: acc * 10 + v) 1 { z = 1; a = 2; }; -> 121 Type: foldlAttrs :: ( a -> String -> b -> a ) -> a -> { ... :: b } -> a */ foldlAttrs = f: init: set: foldl' (acc: name: f acc name set.${name}) init (attrNames set); /* Apply fold functions to values grouped by key. Example: foldAttrs (item: acc: [item] ++ acc) [] [{ a = 2; } { a = 3; }] => { a = [ 2 3 ]; } Type: foldAttrs :: (Any -> Any -> Any) -> Any -> [AttrSets] -> Any */ foldAttrs = # A function, given a value and a collector combines the two. op: # The starting value. nul: # A list of attribute sets to fold together by key. list_of_attrs: foldr (n: a: foldr (name: o: o // { ${name} = op n.${name} (a.${name} or nul); } ) a (attrNames n) ) {} list_of_attrs; /* Recursively collect sets that verify a given predicate named `pred` from the set `attrs`. The recursion is stopped when the predicate is verified. Example: collect isList { a = { b = ["b"]; }; c = [1]; } => [["b"] [1]] collect (x: x ? outPath) { a = { outPath = "a/"; }; b = { outPath = "b/"; }; } => [{ outPath = "a/"; } { outPath = "b/"; }] Type: collect :: (AttrSet -> Bool) -> AttrSet -> [x] */ collect = # Given an attribute's value, determine if recursion should stop. pred: # The attribute set to recursively collect. attrs: if pred attrs then [ attrs ] else if isAttrs attrs then concatMap (collect pred) (attrValues attrs) else []; /* Return the cartesian product of attribute set value combinations. Example: cartesianProductOfSets { a = [ 1 2 ]; b = [ 10 20 ]; } => [ { a = 1; b = 10; } { a = 1; b = 20; } { a = 2; b = 10; } { a = 2; b = 20; } ] Type: cartesianProductOfSets :: AttrSet -> [AttrSet] */ cartesianProductOfSets = # Attribute set with attributes that are lists of values attrsOfLists: foldl' (listOfAttrs: attrName: concatMap (attrs: map (listValue: attrs // { ${attrName} = listValue; }) attrsOfLists.${attrName} ) listOfAttrs ) [{}] (attrNames attrsOfLists); /* Utility function that creates a `{name, value}` pair as expected by `builtins.listToAttrs`. Example: nameValuePair "some" 6 => { name = "some"; value = 6; } Type: nameValuePair :: String -> Any -> { name :: String; value :: Any; } */ nameValuePair = # Attribute name name: # Attribute value value: { inherit name value; }; /* Apply a function to each element in an attribute set, creating a new attribute set. Example: mapAttrs (name: value: name + "-" + value) { x = "foo"; y = "bar"; } => { x = "x-foo"; y = "y-bar"; } Type: mapAttrs :: (String -> Any -> Any) -> AttrSet -> AttrSet */ mapAttrs = builtins.mapAttrs; /* Like `mapAttrs`, but allows the name of each attribute to be changed in addition to the value. The applied function should return both the new name and value as a `nameValuePair`. Example: mapAttrs' (name: value: nameValuePair ("foo_" + name) ("bar-" + value)) { x = "a"; y = "b"; } => { foo_x = "bar-a"; foo_y = "bar-b"; } Type: mapAttrs' :: (String -> Any -> { name :: String; value :: Any; }) -> AttrSet -> AttrSet */ mapAttrs' = # A function, given an attribute's name and value, returns a new `nameValuePair`. f: # Attribute set to map over. set: listToAttrs (map (attr: f attr set.${attr}) (attrNames set)); /* Call a function for each attribute in the given set and return the result in a list. Example: mapAttrsToList (name: value: name + value) { x = "a"; y = "b"; } => [ "xa" "yb" ] Type: mapAttrsToList :: (String -> a -> b) -> AttrSet -> [b] */ mapAttrsToList = # A function, given an attribute's name and value, returns a new value. f: # Attribute set to map over. attrs: map (name: f name attrs.${name}) (attrNames attrs); /* Deconstruct an attrset to a list of name-value pairs as expected by [`builtins.listToAttrs`](https://nixos.org/manual/nix/stable/language/builtins.html#builtins-listToAttrs). Each element of the resulting list is an attribute set with these attributes: - `name` (string): The name of the attribute - `value` (any): The value of the attribute The following is always true: ```nix builtins.listToAttrs (attrsToList attrs) == attrs ``` :::{.warning} The opposite is not always true. In general expect that ```nix attrsToList (builtins.listToAttrs list) != list ``` This is because the `listToAttrs` removes duplicate names and doesn't preserve the order of the list. ::: Example: attrsToList { foo = 1; bar = "asdf"; } => [ { name = "bar"; value = "asdf"; } { name = "foo"; value = 1; } ] Type: attrsToList :: AttrSet -> [ { name :: String; value :: Any; } ] */ attrsToList = mapAttrsToList nameValuePair; /** Like `mapAttrs`, except that it recursively applies itself to the *leaf* attributes of a potentially-nested attribute set: the second argument of the function will never be an attrset. Also, the first argument of the mapping function is a *list* of the attribute names that form the path to the leaf attribute. For a function that gives you control over what counts as a leaf, see `mapAttrsRecursiveCond`. :::{#map-attrs-recursive-example .example} # Map over leaf attributes ```nix mapAttrsRecursive (path: value: concatStringsSep "-" (path ++ [value])) { n = { a = "A"; m = { b = "B"; c = "C"; }; }; d = "D"; } ``` evaluates to ```nix { n = { a = "n-a-A"; m = { b = "n-m-b-B"; c = "n-m-c-C"; }; }; d = "d-D"; } ``` ::: # Type ``` mapAttrsRecursive :: ([String] -> a -> b) -> AttrSet -> AttrSet ``` */ mapAttrsRecursive = # A function that, given an attribute path as a list of strings and the corresponding attribute value, returns a new value. f: # Attribute set to recursively map over. set: mapAttrsRecursiveCond (as: true) f set; /** Like `mapAttrsRecursive`, but it takes an additional predicate that tells it whether to recurse into an attribute set. If the predicate returns false, `mapAttrsRecursiveCond` does not recurse, but instead applies the mapping function. If the predicate returns true, it does recurse, and does not apply the mapping function. :::{#map-attrs-recursive-cond-example .example} # Map over an leaf attributes defined by a condition Map derivations to their `name` attribute. Derivatons are identified as attribute sets that contain `{ type = "derivation"; }`. ```nix mapAttrsRecursiveCond (as: !(as ? "type" && as.type == "derivation")) (x: x.name) attrs ``` ::: # Type ``` mapAttrsRecursiveCond :: (AttrSet -> Bool) -> ([String] -> a -> b) -> AttrSet -> AttrSet ``` */ mapAttrsRecursiveCond = # A function that, given the attribute set the recursion is currently at, determines if to recurse deeper into that attribute set. cond: # A function that, given an attribute path as a list of strings and the corresponding attribute value, returns a new value. # The attribute value is either an attribute set for which `cond` returns false, or something other than an attribute set. f: # Attribute set to recursively map over. set: let recurse = path: mapAttrs (name: value: if isAttrs value && cond value then recurse (path ++ [ name ]) value else f (path ++ [ name ]) value); in recurse [ ] set; /* Generate an attribute set by mapping a function over a list of attribute names. Example: genAttrs [ "foo" "bar" ] (name: "x_" + name) => { foo = "x_foo"; bar = "x_bar"; } Type: genAttrs :: [ String ] -> (String -> Any) -> AttrSet */ genAttrs = # Names of values in the resulting attribute set. names: # A function, given the name of the attribute, returns the attribute's value. f: listToAttrs (map (n: nameValuePair n (f n)) names); /* Check whether the argument is a derivation. Any set with `{ type = "derivation"; }` counts as a derivation. Example: nixpkgs = import {} isDerivation nixpkgs.ruby => true isDerivation "foobar" => false Type: isDerivation :: Any -> Bool */ isDerivation = # Value to check. value: value.type or null == "derivation"; /* Converts a store path to a fake derivation. Type: toDerivation :: Path -> Derivation */ toDerivation = # A store path to convert to a derivation. path: let path' = builtins.storePath path; res = { type = "derivation"; name = sanitizeDerivationName (builtins.substring 33 (-1) (baseNameOf path')); outPath = path'; outputs = [ "out" ]; out = res; outputName = "out"; }; in res; /* If `cond` is true, return the attribute set `as`, otherwise an empty attribute set. Example: optionalAttrs (true) { my = "set"; } => { my = "set"; } optionalAttrs (false) { my = "set"; } => { } Type: optionalAttrs :: Bool -> AttrSet -> AttrSet */ optionalAttrs = # Condition under which the `as` attribute set is returned. cond: # The attribute set to return if `cond` is `true`. as: if cond then as else {}; /* Merge sets of attributes and use the function `f` to merge attributes values. Example: zipAttrsWithNames ["a"] (name: vs: vs) [{a = "x";} {a = "y"; b = "z";}] => { a = ["x" "y"]; } Type: zipAttrsWithNames :: [ String ] -> (String -> [ Any ] -> Any) -> [ AttrSet ] -> AttrSet */ zipAttrsWithNames = # List of attribute names to zip. names: # A function, accepts an attribute name, all the values, and returns a combined value. f: # List of values from the list of attribute sets. sets: listToAttrs (map (name: { inherit name; value = f name (catAttrs name sets); }) names); /* Merge sets of attributes and use the function f to merge attribute values. Like `lib.attrsets.zipAttrsWithNames` with all key names are passed for `names`. Implementation note: Common names appear multiple times in the list of names, hopefully this does not affect the system because the maximal laziness avoid computing twice the same expression and `listToAttrs` does not care about duplicated attribute names. Example: zipAttrsWith (name: values: values) [{a = "x";} {a = "y"; b = "z";}] => { a = ["x" "y"]; b = ["z"]; } Type: zipAttrsWith :: (String -> [ Any ] -> Any) -> [ AttrSet ] -> AttrSet */ zipAttrsWith = builtins.zipAttrsWith or (f: sets: zipAttrsWithNames (concatMap attrNames sets) f sets); /* Merge sets of attributes and combine each attribute value in to a list. Like `lib.attrsets.zipAttrsWith` with `(name: values: values)` as the function. Example: zipAttrs [{a = "x";} {a = "y"; b = "z";}] => { a = ["x" "y"]; b = ["z"]; } Type: zipAttrs :: [ AttrSet ] -> AttrSet */ zipAttrs = zipAttrsWith (name: values: values); /* Merge a list of attribute sets together using the `//` operator. In case of duplicate attributes, values from later list elements take precedence over earlier ones. The result is the same as `foldl mergeAttrs { }`, but the performance is better for large inputs. For n list elements, each with an attribute set containing m unique attributes, the complexity of this operation is O(nm log n). Type: mergeAttrsList :: [ Attrs ] -> Attrs Example: mergeAttrsList [ { a = 0; b = 1; } { c = 2; d = 3; } ] => { a = 0; b = 1; c = 2; d = 3; } mergeAttrsList [ { a = 0; } { a = 1; } ] => { a = 1; } */ mergeAttrsList = list: let # `binaryMerge start end` merges the elements at indices `index` of `list` such that `start <= index < end` # Type: Int -> Int -> Attrs binaryMerge = start: end: # assert start < end; # Invariant if end - start >= 2 then # If there's at least 2 elements, split the range in two, recurse on each part and merge the result # The invariant is satisfied because each half will have at least 1 element binaryMerge start (start + (end - start) / 2) // binaryMerge (start + (end - start) / 2) end else # Otherwise there will be exactly 1 element due to the invariant, in which case we just return it directly elemAt list start; in if list == [ ] then # Calling binaryMerge as below would not satisfy its invariant { } else binaryMerge 0 (length list); /* Does the same as the update operator '//' except that attributes are merged until the given predicate is verified. The predicate should accept 3 arguments which are the path to reach the attribute, a part of the first attribute set and a part of the second attribute set. When the predicate is satisfied, the value of the first attribute set is replaced by the value of the second attribute set. Example: recursiveUpdateUntil (path: l: r: path == ["foo"]) { # first attribute set foo.bar = 1; foo.baz = 2; bar = 3; } { #second attribute set foo.bar = 1; foo.quz = 2; baz = 4; } => { foo.bar = 1; # 'foo.*' from the second set foo.quz = 2; # bar = 3; # 'bar' from the first set baz = 4; # 'baz' from the second set } Type: recursiveUpdateUntil :: ( [ String ] -> AttrSet -> AttrSet -> Bool ) -> AttrSet -> AttrSet -> AttrSet */ recursiveUpdateUntil = # Predicate, taking the path to the current attribute as a list of strings for attribute names, and the two values at that path from the original arguments. pred: # Left attribute set of the merge. lhs: # Right attribute set of the merge. rhs: let f = attrPath: zipAttrsWith (n: values: let here = attrPath ++ [n]; in if length values == 1 || pred here (elemAt values 1) (head values) then head values else f here values ); in f [] [rhs lhs]; /* A recursive variant of the update operator ‘//’. The recursion stops when one of the attribute values is not an attribute set, in which case the right hand side value takes precedence over the left hand side value. Example: recursiveUpdate { boot.loader.grub.enable = true; boot.loader.grub.device = "/dev/hda"; } { boot.loader.grub.device = ""; } returns: { boot.loader.grub.enable = true; boot.loader.grub.device = ""; } Type: recursiveUpdate :: AttrSet -> AttrSet -> AttrSet */ recursiveUpdate = # Left attribute set of the merge. lhs: # Right attribute set of the merge. rhs: recursiveUpdateUntil (path: lhs: rhs: !(isAttrs lhs && isAttrs rhs)) lhs rhs; /* Recurse into every attribute set of the first argument and check that: - Each attribute path also exists in the second argument. - If the attribute's value is not a nested attribute set, it must have the same value in the right argument. Example: matchAttrs { cpu = {}; } { cpu = { bits = 64; }; } => true Type: matchAttrs :: AttrSet -> AttrSet -> Bool */ matchAttrs = # Attribute set structure to match pattern: # Attribute set to check attrs: assert isAttrs pattern; all ( # Compare equality between `pattern` & `attrs`. attr: # Missing attr, not equal. attrs ? ${attr} && ( let lhs = pattern.${attr}; rhs = attrs.${attr}; in # If attrset check recursively if isAttrs lhs then isAttrs rhs && matchAttrs lhs rhs else lhs == rhs ) ) (attrNames pattern); /* Override only the attributes that are already present in the old set useful for deep-overriding. Example: overrideExisting {} { a = 1; } => {} overrideExisting { b = 2; } { a = 1; } => { b = 2; } overrideExisting { a = 3; b = 2; } { a = 1; } => { a = 1; b = 2; } Type: overrideExisting :: AttrSet -> AttrSet -> AttrSet */ overrideExisting = # Original attribute set old: # Attribute set with attributes to override in `old`. new: mapAttrs (name: value: new.${name} or value) old; /* Turns a list of strings into a human-readable description of those strings represented as an attribute path. The result of this function is not intended to be machine-readable. Create a new attribute set with `value` set at the nested attribute location specified in `attrPath`. Example: showAttrPath [ "foo" "10" "bar" ] => "foo.\"10\".bar" showAttrPath [] => "" Type: showAttrPath :: [String] -> String */ showAttrPath = # Attribute path to render to a string path: if path == [] then "" else concatMapStringsSep "." escapeNixIdentifier path; /* Get a package output. If no output is found, fallback to `.out` and then to the default. Example: getOutput "dev" pkgs.openssl => "/nix/store/9rz8gxhzf8sw4kf2j2f1grr49w8zx5vj-openssl-1.0.1r-dev" Type: getOutput :: String -> Derivation -> String */ getOutput = output: pkg: if ! pkg ? outputSpecified || ! pkg.outputSpecified then pkg.${output} or pkg.out or pkg else pkg; /* Get a package's `bin` output. If the output does not exist, fallback to `.out` and then to the default. Example: getBin pkgs.openssl => "/nix/store/9rz8gxhzf8sw4kf2j2f1grr49w8zx5vj-openssl-1.0.1r" Type: getBin :: Derivation -> String */ getBin = getOutput "bin"; /* Get a package's `lib` output. If the output does not exist, fallback to `.out` and then to the default. Example: getLib pkgs.openssl => "/nix/store/9rz8gxhzf8sw4kf2j2f1grr49w8zx5vj-openssl-1.0.1r-lib" Type: getLib :: Derivation -> String */ getLib = getOutput "lib"; /* Get a package's `dev` output. If the output does not exist, fallback to `.out` and then to the default. Example: getDev pkgs.openssl => "/nix/store/9rz8gxhzf8sw4kf2j2f1grr49w8zx5vj-openssl-1.0.1r-dev" Type: getDev :: Derivation -> String */ getDev = getOutput "dev"; /* Get a package's `man` output. If the output does not exist, fallback to `.out` and then to the default. Example: getMan pkgs.openssl => "/nix/store/9rz8gxhzf8sw4kf2j2f1grr49w8zx5vj-openssl-1.0.1r-man" Type: getMan :: Derivation -> String */ getMan = getOutput "man"; /* Pick the outputs of packages to place in `buildInputs` Type: chooseDevOutputs :: [Derivation] -> [String] */ chooseDevOutputs = builtins.map getDev; /* Make various Nix tools consider the contents of the resulting attribute set when looking for what to build, find, etc. This function only affects a single attribute set; it does not apply itself recursively for nested attribute sets. Example: { pkgs ? import {} }: { myTools = pkgs.lib.recurseIntoAttrs { inherit (pkgs) hello figlet; }; } Type: recurseIntoAttrs :: AttrSet -> AttrSet */ recurseIntoAttrs = # An attribute set to scan for derivations. attrs: attrs // { recurseForDerivations = true; }; /* Undo the effect of recurseIntoAttrs. Type: dontRecurseIntoAttrs :: AttrSet -> AttrSet */ dontRecurseIntoAttrs = # An attribute set to not scan for derivations. attrs: attrs // { recurseForDerivations = false; }; /* `unionOfDisjoint x y` is equal to `x // y // z` where the attrnames in `z` are the intersection of the attrnames in `x` and `y`, and all values `assert` with an error message. This operator is commutative, unlike (//). Type: unionOfDisjoint :: AttrSet -> AttrSet -> AttrSet */ unionOfDisjoint = x: y: let intersection = builtins.intersectAttrs x y; collisions = lib.concatStringsSep " " (builtins.attrNames intersection); mask = builtins.mapAttrs (name: value: builtins.throw "unionOfDisjoint: collision on ${name}; complete list: ${collisions}") intersection; in (x // y) // mask; # DEPRECATED zipWithNames = warn "lib.zipWithNames is a deprecated alias of lib.zipAttrsWithNames." zipAttrsWithNames; # DEPRECATED zip = warn "lib.zip is a deprecated alias of lib.zipAttrsWith." zipAttrsWith; }